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COMBINING SIMULATION WITH GENETIC ALGORITHM
FOR SOLVING STOCHASTIC MULTI-PRODUCT
INVENTORY OPTIMIZATION PROBLEM

Abstract. All companies are challenged to match supply and demand, and the way the company
tackles this challenge has a tremendous impact on its profitability. Due to the fact that markets are rap-
idly evolving and becoming more complex, flexible, and information-intensive, notorious binging-and-
purging approach is inappropriate. Scuh an approach, in which product is, firstly, overpurchased or over-
produced in order to prepare for expected demand spikes and then discarded by sharp decline in price.
Thus, in order to tailor inventory control to urgent industrial needs, the discrete-event simulation model
is proposed. The model is stochastic and operates with multiple products under constrained total inven-
tory capacity. Besides that, the model under consideration is distinguished by uncertain replenishment
lags and lost-sales. The paper contains both mathematical description and algorithmic implementation.
Besides that, an optimization framework based on genetic algorithm is proposed for deriving an optimal
control policy. The proposed approach contributes to the field of industrial engineering by providing a
simple and flexible way to compute nearly-optimal inventory control parameters.

Key words: stochastic inventory control, constrained optimization, simulation-optimization, genetic
algorithm.

M. A>KekcoH

AOKTOPAHT, OKbITyLIbl, KOAiK )XoHe 6ainAaHbIC MHCTUTYThI,
AatBusi, Pura K., e-mail: jackson.i@tsi.lv

CTOXaCTMKaAbIK, MyAbTUOHIM KOPAAPbIH 6acKapy XYyHeciH
OHTaMAAHADBIPY MACEAEAEPIH LueLlyre apHaAFaH MMUTALUSIADIK,
MOAEAbAEY MEH reHeTHKaAbIK, aATOPUTMHIH, YHAeCIMi

AHaaTna. Opbip KOMMaHWUs CypaHbIC MEH YCbIHbICTbI YHAECTIPY KaXKET >KOHE KOMMAHWSIHbBIH, OCbl
TanchbipMaHbl KAAan OpbiHAAFaHbl OHbIH, TaObICTbIAbIFbIHA YAKEH acep eTeAl. HapbIKTbiH Te3 Aambir,
KYPAEAI, MKEMAI >aHe e3repmeAi 6oAyblHa 0aliAaHbICTbl apTbIK, OHAIPY, CaTyAbl bIHTAaAQHABIPY
MakcaTbliHAQ GararapAbl KYPT TOMEHAETY CUSIKTbl TOCIAAEP Kasipri Ke3ae eckepin, KOAAAHbIAMAMADI.
OcbliraH 6anAaHbICTbl, BYA MakaAa 6ackapyAblH OHTaAbI MapameTpAepiH Taby yLliH KopAapAbl 6Gackapy
JKYMECIHIH AMCKPETTI-OKUFaAbl MMUTALMSABIK, MOAEAIH >KacayAbl Ke3aernai. CunaTTaaFaH MOAEAb
CTOXACTMKaAbIK, GOAbIM TabblAaAbl XXOHE arperaTTbik, ChIMbIMAbIAbIFbI LEKTEYA GipHelle eHiMmeH 6ip
Ke3Ae >KyMbIC icTernai. CoOHbIMEH KaTap, KapacTbIPbIAbIN OTbIPFAaH MOAEAb OHIMAI XKeTKi3y apacbIHAAFbI
6eArici3 yakbIT aiiblPMALLbIAbIFbIMEH epeKlIeAeHeAl. Makarasa MaTeMaTMKaAbIK, cunatTama >keHe
AATOPUTMAIK OpbIHAAAY OpbiH araAbl. COHbIMEH KaTap, OHTaMAbl Gackapy cascaTbiH Taby yuliH
reHeTMKaAbIK, aArOPUTM Heri3iHAeri TacCiA ycbiHbiAaAbl. CunaTTanFaH 8AIC — KOpAapAbl Gackapy
>KyMeAepi YLWiH OHTanAbl MapaMeTPAEPAI ecenTeyAiH, KapananbiM KaHe MKEMAT dAICI.

YCbIHbIAFAH BAIC ©HEPKACINTIK MallMHa >Kacay CaAacblHa biKMaA eteai, 6ipak, Toyekeaaep MeH
CEHIMAJAIK casicaTblHa KATbICTbl TYreHAEYAIH OHTalAbl MapamMeTpPAEpPiH ecenTeyaiH Kapanaibim, Gipak,
THIMAI BaiciH ycbiHaabl. COHbIMEH KaTap, ©AIC aBTOMAaTTaHAbBIPbIAFAH TancbIpbiC Gepy KyieciHae
KOAAQHbIAYbl MYMKIH.

Tynin ce3aep: KOpAapAbl CTOXaCTMKAAbIK, 6acKapy, LWEKTEYAePMEH OHTAMAAHABIPY, CUMYASLMS-
ONTMMM3aLMSI, FEHETUKAABIK, AATOPUTM.
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KOM6MHaLI,M$I UMUTALNOHHOIO MOAEAUPOBAHUSA U TEHETUYECKOIro aAropuTma
AAS pelleHUusa 3aAad onTMMM3alun CTOXAaCTUYECKOMH
MHOI'OI'IpO,A,YKTOBOFl CUCTEMDI YNIpaBA€HUA 3anacamMu

AHHOoTauus. Kaxaas KOMMaHUS CTAaAKMBAETCS C HEOOXOAMMOCTBIO CMHXPOHM3aUMKM crpoca U
NMPEAAOXKEHNS U TO, HACKOAbKO KOMIMAHME CrpaBASeTCS C AQHHOM 3aAaveit, OKasblBaeT OrpoOMHOe
BAUSIHME Ha ee MPUObIAbHOCTb. B CBS3M C TeM, UTO pbiHKM BbICTPO Pa3BMBAIOTCS M CTAHOBATCS BCe 6oaee
CAOXHbIMU, TMOKUMM, BOAOTUAbHBIMM U MH(OPMALLMOHHO HACbILEHHbIMK, YCTapeBLUME MOAXOADI,
npeAnoAaraioye nepernpomsBoACTBO, CMEHSEMOE PE3KMM CHUXKEHMEM LieHbl AAS CTMMYAMPOBAHMUS
MPOAQKM UBAULLHEN MPOAYKLIMU, SBASIOTCS HEMPUEMANMBIMU. B 3TOI CBA3M, AQHHAS CTaTbs NpecAesyeT
ueAb — paspaboTtatb PEAAMCTUYHYIO AMCKPETHO-COOBITUAHYIO MMMTALMOHHYIO MOAEAb CUCTEMbI
YMNPaBAEHMNS 3anacamm AAS HAXOXKAEHWS ONTMMAAbHBIX MApaMeTPOB KOHTPOAS. OnucbiBaemas MOAEAb
SIBASIETCSl CTOXACTMYECKON M pabOTaeT C HECKOAbKMMM MPOAYKTaMM MPU OrpaHUYEHHON COBOKYMHOM
BMeCTMMOCTW. Kpome TOro, paccmarpuBaeMasl MOAEAb OTAMYAETCS HEOMNPEeAEAEHHbIMU BPEMEHHbIMM
AaramMmn MexxAy nocrtaBkamu npoAykKumn. CTaTbsl COAEPXKMT Kak MaTeMaTM4ecKoe onucaHue, Tak U
AATOPUTMMYECKYIO peaAam3aumio. Kpome Toro, AAS HaXOXXAEHMS OMTUMAAbHOM MOAUTUKM YNPABAEHMS
NpeAAaraeTcsl MOAXOA HQ OCHOBE FeHeTMYeCcKoro aAropntMa. OnMCaHHbIA METOA SBASIETCS MPOCTbIM
M TMOKMM CrOCO6 BbIUMCAEHMSI OKOAO-ONMTMMAAbHBIX MAPAMETPOB AAS CUCTEM YIMPABAEHUS 3anacamu.

[peAAOXKEHHbI MOAXOA BHOCUMT CBOM BKAAQA B 00OAACTb MPOMBILIAEHHOTO MPOEKTUPOBaHMS,
NPEAOCTaBASIS MPOCTOM, HO BCe e 3P@EKTUBHbIM CMOCO6 BbIYUCAEHWUS MOYUTM OMTUMAAbHbIX
rapameTpoB 3aracoB C y4YeTOM MOAMTMKM pUCKa M HaAeXHOCTU. Kpome TOro, MeTtoa MOXKeT ObiTb
NPUMEHEH B aBTOMATM3MPOBaHHbIX CMCTEMax 3aKasa.

KAtoueBble cAoBa: cToxacTuyeckoe yrnpaBAeHMe 3anacamu, onTMMmn3aumga C OorpaHnvYeHndamu,

CUMYAAUNA-ONTUMMN3aLNA, reHeTu4yeckmnm AATOPUTM.

Introduction

Modern markets are extremely competitive.
Businesses are facing unceasingly growing pressure
on both prices and quality. Besides that, the company
is required to swiftly respond to stochastic market
conditions. Incorrect inventory policy leads not
only to corporate losses, but also to overproduction
(Altiok, 2012). In this regard, traditional inventory
policies are not appropriate anymore. Moreover,
overproduction causes serious environmental
problems, depleting natural resources and polluting
the atmosphere.

The real-world inventory optimization is
commonly characterized by the large-scale size
and the necessity for nearly-optimal solutions in
feasible computing times (Angun, 2011). That
is why, the metaheuristics in general and genetic
algorithms in particular are used so widely to
define an optimal inventory policy. The world
is full of uncertainty, which frequently makes
classical deterministic approaches unsuitable due
to excessive simplicity.

As it is mentioned in the recent research (Juan
et al., 2015), real-life stochastic combinatorial
optimization problems may be reformulated as a
simulation in a natural way. Thus, the hybridization
of metaheuristics and simulation techniques

promises to be an efficient solution of stochastic
inventory optimization and inventory control
problems. First and foremost, the combination
of simulation and metaheuristics is focused on
efficiency taking into account stochastic components
that may be contained either in the objective
function or in the constraints. Such approaches
are conventionally called simulation—based
optimization or “simheuristics”. The method aims to
utilize a simulation instead of an objective function
in traditional form and apply the genetic algorithm
to find such simulation adjustments that would lead
to the optimal output. In the proposed method, the
iterative searching process of the genetic algorithm
has to assess the quality of individual solutions,
highlighting the promising ones. Besides, real-world
stochasticity may be modelled throughout the best-
fit probability distribution. The distribution may be
either theoretical or empirical, without the need to
be approximated to normal or exponential.
Nowadays discrete-event simulation is the most
dominant simulation paradigm for simulation-
optimization frameworks (Gosavi, 2015). The first
simulation-based optimization of inventory control
system dates back to Fu and Hill (1997). The model
assumes zero replenishment lead time and periodic
review. The cost function comprises holding,
purchasing, transportation and backlogging.
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Among modern papers metaheuristic in
general and genetic algorithms in particular are
distinguished. For instance, researchers considered
a stochastic supply chain management problem
(Peirleitneret al., 2016). The problem is stated as bi-
objective optimization problem. Such that overall
supply chain costs are subject to minimization,
while service level must be maximized. Such
optimal control parameters as reorder pointsand lot
sizes are derived by combining genetic algorithm
with discrete-event simulation. In the same year
discrete-rate simulation paradigm is used as a core
to solve single-product inventory control problem
(Zvirgzdina and Tolujew, 2016). In this study the
model is developed in ExtendSim using inbuilt
genetic algorithm to find optimal control parameters.
The recent research focuses on spare part inventory
control for an industrial plant. Assuming that the
demand is driven by maintenance requirements,
spare part provision for a single-line conveyor-
like system is considered (Zahedi-Hosseini, 2018).
Average cost per unit time is taken as the optimality
criterion and optimization is conducted using
SimRunner’s inbuilt genetic algorithm.

This paper describes a possible combination of
discrete-event simulation and genetic algorithm to
define the optimal inventory policy in stochastic
multi-product inventory systems. The discrete-event
model under consideration corresponds to the just-
in-time inventory control system with a floating
reorder point. The system operates under stochastic
demand and replenishment lead time. The utilized
genetic algorithm is distinguished by a non-binary
chromosome encoding, uniform crossover and
two mutation operators. The proposed approach
contributes to the field of industrial engineering by
providing a simple, but still efficient way to compute
nearly-optimal inventory parameters with regard to
risk and reliability policy. Besides, the method may
be applied in automated ordering systems.

Materials and methods

First of all, the method requires designing a
simulation that corresponds to the real system
with a high degree of accuracy. As it is already
mentioned, such a simulation will play the role of
an objective function. Thus, an optimization process
will be reduced to the search of the best simulation
adjustments. The inventory theory at its current stage
has developed a significant mathematical foundation
for solving problems related to the determination of
the optimal inventory policy (Zipkin, 2000). The
most suitable model among considered is the model
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of Hopp and Spearman (2008). It is also worth noting
that several distinguishing features were taken from
“lost sales (r, Q) inventory control model” (Kouki
et al., 2015). The considered model makes several
assumptions:

— Unfulfilled demands are defined as a lost
opportunity and no backlog shall be fulfilled late;

— Demand size, demand frequency and re-
plenishment lead time are continuous random vari-
ables;

—  Product of a particular type is replenished
by an individual supplier.

Discrete-event simulation paradigm is chosen
in order to take into account random components
without a dramatic increase in system complexity
at the computational level. Unlike in continuous
simulation, system dynamics is not unceasingly
tracked during the simulation time. Discrete-event
simulation contains a list of events, such that each
event takes place at a particular instant of time
altering the state of the system. It is important to
emphasize that there are no changes in the system
between consecutive events. That is why, the
simulation laps in time from previous event to the
next one and runs much faster saving precious
computational resources. Each event is scheduled
according to preliminary generated time ¢ and
executes sequentially. Generated time is appended
to a time vector ' = (¢, f,...t), which may be
interpreted as a time-counter. The total inventory
assortment corresponds to the set of products P,
such that each product p.[IP. The storage capacity
allocation is the first priority task. Presuming that
I 1is the total storage capacity, we declare B as a
vector of individual storage capacities assigned for
products:

X b =1,.:¥b €B )

The simulation begins with an initial inventory
level of I ati, During the simulation, emerging
demands x are are satisfied and the stock level
declines gradually If the stock level falls below a
reorder point 0 the inventory places a new order
yp,t to refill the stock. Therefore, an inventory level
at a particular moment of time equals to an inventory
level in previous moment subtracting received
demand and adding an order that was placed at ¢ —
L Equation 2. Where Lp is the replenishment lead
time for a product p. It is also worth noting that
such a model aims to represent the inventory under
some sort of just-in-time policy, thus, the order size
Y, equals to the corresponding maximal inventory
capac1ty b, subtracting the difference between the
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current inventory level /  and adjusted safety-stock
SS Equatlon 3. In the proposed model, a new reorder
pomt r, is recalculated after each replenishment
Equatlon 4. Where m L) stands for a mean demand
during the replenlshment lead time and SS is a value
of the correspondlng safety-stock. Based on that, the
number of arisen backorders for product p at time ¢

may be determined as the step function:

Fpesa1 = Iy — Xpe T ¥poor Q)

Vo = b,~(1,.—55,).if I, > 55,
pit bp,if IM = SS::
Type = My T 55, “4)
0,ifx . <1I
0,,= e ap
- Xy — Ip,s’lf E -

Discrete-event simulation of such models is
simple enough and can be performed by the iterative
algorithm (Figure 1).

Figure 1 — The logic behind the simulation

Each product in an assortment has a different
market price and thus a different backorder cost
0, Likewise, unit costs of storage and shipping, hp
and l respectively, vary depending on product’s
propertles and subtleties of handling. Thereby, the
total cost function for each product is the sum of the
products of unit costs on number of units shipped,
stored or backordered respectively:

Tc =1 El ﬂ-}rps+ h’ El o ps+o Ei. ﬂops(6)
In such settings, an overflow may occur:

F=x1=3% b )

Such a case may be taken into account by

declaring a specific cost s related to the unit overflow

and tracing the overflow level. In real world, such a

cost corresponds to the warehouse outsourcing or
reverse logistics (Bijvankand Vis 1, 2011).

0,if Tt 1, <37 b,

F, = F,if T8 1 >3/fl b, ®)

In this regard the total costs function for an in-
ventory as a whole 7'C takes the following form

rc= XX TC, + sZi 9)

The genetic algorithm was invented and firstly
introduced by Holland (1975). To date, genetic
algorithms have been successfully implemented in
logistics and supply chain management (Yeh and
Chuang, 2011). The motivation for combining genetic
algorithm with simulation is that in real-life inventory
problems, it is highly preferable to obtain a nearly-
optimal solution for a precisely accurate model than
the absolutely optimal solution for an oversimplified
deterministic model. Genetic algorithms are totally
different in comparison with the conventional search
techniques. The optimization procedure starts with
an initial set of randomly generated solutions that
are called population. Each individual solution in the
population is called a chromosome. The chromosomes
undergo changes through sequential iterations. Such
iterations are called generations. The chromosomes
within the generation are evaluated, according to a
fitness function. The next generation is composed
by a set of new chromosomes, called offspring.
Offspring, in its turn, is mainly formed by the fittest
chromosomes, partially altered by either crossover or
mutation operators.

In order to apply genetic algorithm, the following
initial parameters are required:

— Population size (N) — the number of chromo-
somes in each generation;

— Crossover rate (P,) — the probability of ex-
ecuting a crossover operator;

— Mixing ratio (P ) — the probability for each
attribute to be exchanged;
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— Mutation rate (P,,) — the probability of ex-
ecuting a mutation operator 1;

— Mutation rate (P, ,) — the probability of ex-
ecuting a mutation operator 2;

— Mutation step (delta) — the gene-multiplier
used by the mutation operator 2;

— Tournament size (z).

Practically, genetic algorithm is quite efficient
in cases of large search space with lack of
knowledge on the structure of the fitness function.
The stochastic inventory optimization problem
undoubtedly belongs to this domain. Moreover, in
cases of high stochasticity, it becomes difficult to
apply some traditional optimization techniques.

Genetic algorithm is quite famous as a
problem-independent approach, nevertheless, the
chromosome representation is a critical issue.
Applying genetic algorithm to the inventory
optimization problem under consideration, we
are looking for such adjustments to simulation
parameters: storage-resources allocation B and
corresponding safety-stock levels SS that lead to the
best fitness. The chromosome may be encoded as a
|P| size list of integers v= (b, SS,, b,, SS,, ... bP‘,
SS, P‘). In such a list each odd element stands for the
inventory capacity allocated to each product p and
each even element represents adjusted safety-stock
level for the corresponding product p (Figure 2).

Figure 2 —Chromosome representation

In such a simulation-driven approach, fitness
function is evaluated by sequential runs of several
simulations. In this case, fitness is the mean value
of total costs calculated in several sequential
simulation’s runs. with the same parameters. We are
looking for such parameters that lead to the minimal
mean value of the total cost function satisfying the
constraints:

min, ., E[X, TC,(a)]

(10)
T b, < .. vi=1,23,..,|P| (I

5SS, <b;Vi=1,2,3,.,|P| (12
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In case the solution does not satisfy constraints,
the fitness will take extremely high values, due to
infeasibility of such a solution. During the optimi-
zation procedure, such individuals (candidate solu-
tions) will have only an insignificant chance to pass
to the next generation.

It is pointing out that a suitable chromosome
representation for the particular problem domain
is an extremely important task, since a good choice
will make the search faster and easier by restricting
the search space. However, it is tremendously im-
portant to keep in mind that the crossover and muta-
tion operators must take into account the design of
the chromosome. It is important to emphasize that in
the considered problem a non-binary chromosome
representation was chosen.The main reason why bi-
nary representation is the most frequent is the sim-
plicity to implement and popularity in academic pa-
pers (Davis, 1991). Moreover, binary chromosome
representation is usually space-efficient, that is why
it was so popular in times, when memory was a seri-
ous problem. However, in real-world problems, it
becomes common to create a genotype representa-
tion that corresponds to the considered problem with
a high degree of accuracy.Crossover is the distin-
guishing operator of the genetic algorithm. Basi-
cally, it is a process of taking two parent solutions
and production of offspring solutions in order to get
a new, potentially better one. Crossover is used to
vary chromosomes from one generation to the next.
In order to solve the stochastic inventory problem,
the uniform crossover is proposed (Figure 3).

Figure 3 —Uniform crossover representation

In the uniform crossover individual genes
in the chromosome are compared between two
parents and swapped with the fixed mixing ratio P..
Uniform crossover is chosen for two main reasons.
Firstly, since genes in the chromosome correspond
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to different simulation parameters SS and B, we
seek a way to keep odd and even genes separated.
Secondly, the uniform crossover is an efficient way
to avoid the premature convergence (Michalewicz,
1996).
P« probability of swapping values
« first vector <v, v,, ..., v >
w « second vector <w, w,, ..., w >
fori in (1, length of vector)do
ifP > random number then
swap the values of vand w,
return and W
Besides, genetic algorithm requires a mutation
operator to perform the optimization. Taking into
account the particularities of chromosome encoding,
it is proposed to apply two different mutation
operators (“mild” and “radical”). The radical
mutation is applied in order to prevent the premature
convergence (otherwise population may get stuck in
local optima). In radical mutation we replace gens
in the chromosome by a new integer number in a
feasible range (0, I ) with the probability P_ .
P, < probability of replacing
«— vector
fori in (1, length of ) do
ifP > random numberthen
«— random integer
return
On the other hand, mild mutation is applied to
accelerate convergence. The mild-mutation operator
alters genes in the chromosome with the probability
P_, by multiplying them on the step delta rounding
to the nearest integer after that.
P, < probability of altering value
« vector
fori in range (1, length of ) do
ifP > random number then
«—round( *delta)
return
It is concluded that tournament selection is
an efficient and robust mechanism for working
with imperfect fitness functions (Miller and
Goldberg, 1995). Tournament selection runs several
“tournaments” among ¢ individuals (chromosomes)
randomly chosen from the population. The fittest
individual in each tournament is selected for the
following crossover. Since weak individuals have
relatively a small chance to be selected in large
tournaments, it is quite important to find the optimal
tournament size ¢. Tournament Selection can be
programmed by the extremely simple algorithm:
P population
t « tournament size, t > 2

Best«— random individual from P

fori in range (2 to ¢) do

Next « random individual from P

if Fit(Next) > Fit(Best) then

Best«— Next

return Best

Tournament selection has several significant
benefits over alternative selection methods, namely,
it is both simple and efficient to code, it works with
parallel architectures and, lastly, it may be easily
adjusted.

Results and Discussion

Consider an example of the six-product
inventory control system that operates under just-
in-time policy. There is a retailer selling products
of 6 types that are replenished by an individual
supplier. Products of all six types share a common
storage with a limited capacity of 150 pallets
= f': 150. Each type of product has a unique triangular
distribution for both demand size and replenishment
lead time and exponential distribution for demand
interarrivals.

We apply given adjustments and execute 60-
days simulation of the inventory control system. As
the result, the algorithm has successfully converged
at the optimum in 122 generations. The optimal
solution is represented by the chromosome =(30, 4,
17,2,24,4,41,5,15, 1, 13, 1) with the expected total
costs of E[X5_, TC,(¥)] =2828835USD. The fittest
chromosome stands for the following simulation
adjustments: storage-resources allocation B = (30,
17, 24, 41, 15, 13) pallets with the corresponding
safety-stock levels SS = (4, 2, 4, 5, 1, 1) pallets.
The pivotal advantage of the involved discreet-
event simulation is a possibility to perform risk and
reliability analysis. Additionally, such an approach
allows the researcher to plot the inventory dynamics
in details and easily spot existing bottlenecks or
system vulnerabilities.

Since the parameters of a genetic algorithm
(especially a population size N and a tournament
size t) have tremendous impact on convergence
speed and a probability of premature convergence,
it is very important to find a balance between search
speed and premature convergence prevention.

Parameters with such a balance may be found
empirically. We also can conclude that even rela-
tively insignificant alterations in parameters of the
genetic algorithm noticeably affect the convergence
speed. Furthermore, some unsuccessful settings
may result a premature convergence.
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Conclusion

In conclusion, the proposed optimization
technique is a simple to design and computationally
efficient approach to find nearly-optimal inventory
policy in stochastic multi-product inventory
systems. Additionally, the combination of discrete-
event simulation and genetic algorithm provides a
flexible method to solve complex problems with
lack of knowledge on the structure of the objective
function. Besides, the key advantage of such a
simulation-driven approach is the possibility to trace
inventory dynamics in details. It is supposed that

systems by retail companies.

The research also concludes with a statement
that the non-binary chromosome encoding in
combination with uniform crossover and two
mutation operators provide a fine balance between
convergence speed and likelihood of premature
convergence. There are still several minor problems
to solve, such as the program-optimization of both
the simulation and genetic algorithm. Moreover, it
is crucially important to test the proposed approach
on problems with higher dimension and compare
it to alternative metaheuristic techniques. These
issues are waiting to be deeply explored in a future

the method may be applied in automated ordering  research.
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