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COMBINING SIMULATION WITH GENETIC ALGORITHM  
FOR SOLVING STOCHASTIC MULTI-PRODUCT  

INVENTORY OPTIMIZATION PROBLEM

Abstract. All companies are challenged to match supply and demand, and the way the company 
tackles this challenge has a tremendous impact on its profitability. Due to the fact that markets are rap-
idly evolving and becoming more complex, flexible, and information-intensive, notorious binging-and-
purging approach is inappropriate. Scuh an approach, in which product is, firstly, overpurchased or over-
produced in order to prepare for expected demand spikes and then discarded by sharp decline in price. 
Thus, in order to tailor inventory control to urgent industrial needs, the discrete-event simulation model 
is proposed. The model is stochastic and operates with multiple products under constrained total inven-
tory capacity. Besides that, the model under consideration is distinguished by uncertain replenishment 
lags and lost-sales. The paper contains both mathematical description and algorithmic implementation. 
Besides that, an optimization framework based on genetic algorithm is proposed for deriving an optimal 
control policy. The proposed approach contributes to the field of industrial engineering by providing a 
simple and flexible way to compute nearly-optimal inventory control parameters.

Key words: stochastic inventory control, constrained optimization, simulation-optimization, genetic 
algorithm.
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Стохастикалық мультиөнім қорларын басқару жүйесін  
оңтайландыру мәселелерін шешуге арналған имитациялық  

модельдеу мен генетикалық алгоритмнің үйлесімі

Аңдатпа. Әрбір компания сұраныс пен ұсынысты үндестіру қажет және компанияның осы 
тапсырманы қалай орындағаны оның табыстылығына үлкен әсер етеді. Нарықтың тез дамып, 
күрделі, икемді және өзгермелі болуына байланысты артық өндіру, сатуды ынталандыру 
мақсатында бағаларды күрт төмендету сияқты тәсілдер қазіргі кезде ескеріп, қолданылмайды. 
Осыған байланысты, бұл мақала басқарудың оңтайлы параметрлерін табу үшін қорларды басқару 
жүйесінің дискретті-оқиғалы имитациялық моделін жасауды көздейді. Сипатталған модель 
стохастикалық болып табылады және агрегаттық сыйымдылығы шектеулі бірнеше өніммен бір 
кезде жұмыс істейді. Сонымен қатар, қарастырылып отырған модель өнімді жеткізу арасындағы 
белгісіз уақыт айырмашылығымен ерекшеленеді. Мақалада математикалық сипаттама және 
алгоритмдік орындалу орын алады. Сонымен қатар, оңтайлы басқару саясатын табу үшін 
генетикалық алгоритм негізіндегі тәсіл ұсынылады. Сипатталған әдіс – қорларды басқару 
жүйелері үшін оңтайлы параметрлерді есептеудің қарапайым және икемді әдісі.

Ұсынылған әдіс өнеркәсіптік машина жасау саласына ықпал етеді, бірақ тәуекелдер мен 
сенімділік саясатына қатысты түгендеудің оңтайлы параметрлерін есептеудің қарапайым, бірақ 
тиімді әдісін ұсынады. Сонымен қатар, әдіс автоматтандырылған тапсырыс беру жүйесінде 
қолданылуы мүмкін.

Түйін сөздер: қорларды стохастикалық басқару, шектеулермен оңтайландыру, симуляция-
оптимизация, генетикалық алгоритм.
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Комбинация имитационного моделирования и генетического алгоритма 
 для решения задач оптимизации стохастической  
многопродуктовой системы управления запасами

Аннотация. Каждая компания сталкивается с необходимостью синхронизации спроса и 
предложения и то, насколько компания справляется с данной задачей, оказывает огромное 
влияние на ее прибыльность. В связи с тем, что рынки быстро развиваются и становятся все более 
сложными, гибкими, волотильными и информационно насыщенными, устаревшие подходы, 
предполагающие перепроизводство, сменяемое резким снижением цены для стимулирования 
продажи излишней продукции, являются неприемлимыми. В этой связи, данная статья преследует 
цель – разработать реалистичную дискретно-событийную имитационную модель системы 
управления запасами для нахождения оптимальных параметров контроля. Описываемая модель 
является стохастической и работает с несколькими продуктами при ограниченной совокупной 
вместимости. Кроме того, рассматриваемая модель отличается неопределенными временными 
лагами между поставками продукции. Статья содержит как математическое описание, так и 
алгоритмическую реализацию. Кроме того, для нахождения оптимальной политики управления 
предлагается подход на основе генетического алгоритма. Описанный метод является простым 
и гибким способ вычисления около-оптимальных параметров для систем управления запасами.

Предложенный подход вносит свой вклад в область промышленного проектирования, 
предоставляя простой, но все же эффективный способ вычисления почти оптимальных 
параметров запасов с учетом политики риска и надежности. Кроме того, метод может быть 
применен в автоматизированных системах заказа.

Ключевые слова: стохастическое управление запасами, оптимизация c ограничениями, 
симуляция-оптимизация, генетический алгоритм.

Introduction

Modern markets are extremely competitive. 
Businesses are facing unceasingly growing pressure 
on both prices and quality. Besides that, the company 
is required to swiftly respond to stochastic market 
conditions. Incorrect inventory policy leads not 
only to corporate losses, but also to overproduction 
(Altiok, 2012). In this regard, traditional inventory 
policies are not appropriate anymore. Moreover, 
overproduction causes serious environmental 
problems, depleting natural resources and polluting 
the atmosphere. 

The real-world inventory optimization is 
commonly characterized by the large-scale size 
and the necessity for nearly-optimal solutions in 
feasible computing times (Angun, 2011). That 
is why, the metaheuristics in general and genetic 
algorithms in particular are used so widely to 
define an optimal inventory policy. The world 
is full of uncertainty, which frequently makes 
classical deterministic approaches unsuitable due 
to excessive simplicity. 

As it is mentioned in the recent research (Juan 
et al., 2015), real-life stochastic combinatorial 
optimization problems may be reformulated as a 
simulation in a natural way. Thus, the hybridization 
of metaheuristics and simulation techniques 

promises to be an efficient solution of stochastic 
inventory optimization and inventory control 
problems. First and foremost, the combination 
of simulation and metaheuristics is focused on 
efficiency taking into account stochastic components 
that may be contained either in the objective 
function or in the constraints. Such approaches 
are conventionally called simulation–based 
optimization or “simheuristics”. The method aims to 
utilize a simulation instead of an objective function 
in traditional form and apply the genetic algorithm 
to find such simulation adjustments that would lead 
to the optimal output. In the proposed method, the 
iterative searching process of the genetic algorithm 
has to assess the quality of individual solutions, 
highlighting the promising ones. Besides, real-world 
stochasticity may be modelled throughout the best-
fit probability distribution. The distribution may be 
either theoretical or empirical, without the need to 
be approximated to normal or exponential.

Nowadays discrete-event simulation is the most 
dominant simulation paradigm for simulation-
optimization frameworks (Gosavi, 2015). The first 
simulation-based optimization of inventory control 
system dates back to Fu and Hill (1997). The model 
assumes zero replenishment lead time and periodic 
review. The cost function comprises holding, 
purchasing, transportation and backlogging. 
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Among modern papers metaheuristic in 
general and genetic algorithms in particular are 
distinguished. For instance, researchers considered 
a stochastic supply chain management problem 
(Peirleitneret al., 2016). The problem is stated as bi-
objective optimization problem. Such that overall 
supply chain costs are subject to minimization, 
while service level must be maximized. Such 
optimal control parameters as reorder pointsand lot 
sizes are derived by combining genetic algorithm 
with discrete-event simulation. In the same year 
discrete-rate simulation paradigm is used as a core 
to solve single-product inventory control problem 
(Zvirgzdina and Tolujew, 2016). In this study the 
model is developed in ExtendSim using inbuilt 
genetic algorithm to find optimal control parameters. 
The recent research focuses on spare part inventory 
control for an industrial plant. Assuming that the 
demand is driven by maintenance requirements, 
spare part provision for a single-line conveyor-
like system is considered (Zahedi-Hosseini, 2018). 
Average cost per unit time is taken as the optimality 
criterion and optimization is conducted using 
SimRunner’s inbuilt genetic algorithm.

This paper describes a possible combination of 
discrete-event simulation and genetic algorithm to 
define the optimal inventory policy in stochastic 
multi-product inventory systems. The discrete-event 
model under consideration corresponds to the just-
in-time inventory control system with a floating 
reorder point. The system operates under stochastic 
demand and replenishment lead time. The utilized 
genetic algorithm is distinguished by a non-binary 
chromosome encoding, uniform crossover and 
two mutation operators. The proposed approach 
contributes to the field of industrial engineering by 
providing a simple, but still efficient way to compute 
nearly-optimal inventory parameters with regard to 
risk and reliability policy. Besides, the method may 
be applied in automated ordering systems.

Materials and methods

First of all, the method requires designing a 
simulation that corresponds to the real system 
with a high degree of accuracy. As it is already 
mentioned, such a simulation will play the role of 
an objective function. Thus, an optimization process 
will be reduced to the search of the best simulation 
adjustments. The inventory theory at its current stage 
has developed a significant mathematical foundation 
for solving problems related to the determination of 
the optimal inventory policy (Zipkin, 2000). The 
most suitable model among considered is the model 

of Hopp and Spearman (2008). It is also worth noting 
that several distinguishing features were taken from 
“lost sales (r, Q) inventory control model” (Kouki 
et al., 2015). The considered model makes several 
assumptions:

– Unfulfilled demands are defined as a lost 
opportunity and no backlog shall be fulfilled late;

– Demand size, demand frequency and re-
plenishment lead time are continuous random vari-
ables;

– Product of a particular type is replenished 
by an individual supplier.

Discrete-event simulation paradigm is chosen 
in order to take into account random components 
without a dramatic increase in system complexity 
at the computational level. Unlike in continuous 
simulation, system dynamics is not unceasingly 
tracked during the simulation time. Discrete-event 
simulation contains a list of events, such that each 
event takes place at a particular instant of time 
altering the state of the system. It is important to 
emphasize that there are no changes in the system 
between consecutive events. That is why, the 
simulation laps in time from previous event to the 
next one and runs much faster saving precious 
computational resources. Each event is scheduled 
according to preliminary generated time tn and 
executes sequentially. Generated time is appended 
to a time vector T = (t0, t1…tn), which may be 
interpreted as a time-counter. The total inventory 
assortment corresponds to the set of products P, 
such that each product pi‐P. The storage capacity 
allocation is the first priority task. Presuming that 
Imax is the total storage capacity, we declare Β as a 
vector of individual storage capacities assigned for 
products:

             (1)

The simulation begins with an initial inventory 
level of Ip at t0. During the simulation, emerging 
demands xp,t are are satisfied and the stock level 
declines gradually. If the stock level falls below a 
reorder point rp,t, the inventory places a new order 
yp,t to refill the stock. Therefore, an inventory level 
at a particular moment of time equals to an inventory 
level in previous moment subtracting received 
demand and adding an order that was placed at t – 
L Equation 2. Where Lp is the replenishment lead 
time for a product p. It is also worth noting that 
such a model aims to represent the inventory under 
some sort of just-in-time policy, thus, the order size 
yp,t equals to the corresponding maximal inventory 
capacity bp subtracting the difference between the 
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current inventory level Ip,t and adjusted safety-stock 
SSp Equation 3. In the proposed model, a new reorder 
point rp is recalculated after each replenishment 
Equation 4. Where mp,[t-L,t) stands for a mean demand 
during the replenishment lead time and SSp is a value 
of the corresponding safety-stock. Based on that, the 
number of arisen backorders for product p at time t 
may be determined as the step function:

        (2)

  (3)

             (4)

      (5)

Discrete-event simulation of such models is 
simple enough and can be performed by the iterative 
algorithm (Figure 1).

Figure 1 – The logic behind the simulation

Each product in an assortment has a different 
market price and thus a different backorder cost 
op. Likewise, unit costs of storage and shipping, hp 
and lp respectively, vary depending on product’s 
properties and subtleties of handling. Thereby, the 
total cost function for each product is the sum of the 
products of unit costs on number of units shipped, 
stored or backordered respectively:

 (6)

In such settings, an overflow may occur:

                  (7)

Such a case may be taken into account by 
declaring a specific cost s related to the unit overflow 
and tracing the overflow level. In real world, such a 
cost corresponds to the warehouse outsourcing or 
reverse logistics (Bijvankand Vis I, 2011).

           (8)

In this regard the total costs function for an in-
ventory as a whole TC takes the following form

            (9)

The genetic algorithm was invented and firstly 
introduced by Holland (1975). To date, genetic 
algorithms have been successfully implemented in 
logistics and supply chain management (Yeh and 
Chuang, 2011). The motivation for combining genetic 
algorithm with simulation is that in real-life inventory 
problems, it is highly preferable to obtain a nearly-
optimal solution for a precisely accurate model than 
the absolutely optimal solution for an oversimplified 
deterministic model. Genetic algorithms are totally 
different in comparison with the conventional search 
techniques. The optimization procedure starts with 
an initial set of randomly generated solutions that 
are called population. Each individual solution in the 
population is called a chromosome. The chromosomes 
undergo changes through sequential iterations. Such 
iterations are called generations. The chromosomes 
within the generation are evaluated, according to a 
fitness function. The next generation is composed 
by a set of new chromosomes, called offspring. 
Offspring, in its turn, is mainly formed by the fittest 
chromosomes, partially altered by either crossover or 
mutation operators.

In order to apply genetic algorithm, the following 
initial parameters are required:

– Population size (N) – the number of chromo-
somes in each generation;

– Crossover rate (Pc) – the probability of ex-
ecuting a crossover operator;

– Mixing ratio (Pu) – the probability for each 
attribute to be exchanged;
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– Mutation rate (Pm1) – the probability of ex-
ecuting a mutation operator 1;

– Mutation rate (Pm2) – the probability of ex-
ecuting a mutation operator 2;

– Mutation step (delta) – the gene-multiplier 
used by the mutation operator 2;

– Tournament size (t).
Practically, genetic algorithm is quite efficient 

in cases of large search space with lack of 
knowledge on the structure of the fitness function. 
The stochastic inventory optimization problem 
undoubtedly belongs to this domain. Moreover, in 
cases of high stochasticity, it becomes difficult to 
apply some traditional optimization techniques.

Genetic algorithm is quite famous as a 
problem-independent approach, nevertheless, the 
chromosome representation is a critical issue. 
Applying genetic algorithm to the inventory 
optimization problem under consideration, we 
are looking for such adjustments to simulation 
parameters: storage-resources allocation Β and 
corresponding safety-stock levels SS that lead to the 
best fitness. The chromosome may be encoded as a 
|P| size list of integers v= (b1, SS1, b2, SS2, … b|P|, 
SS|P|). In such a list each odd element stands for the 
inventory capacity allocated to each product p and 
each even element represents adjusted safety-stock 
level for the corresponding product p (Figure 2).

Figure 2 –Chromosome representation

In such a simulation-driven approach, fitness 
function is evaluated by sequential runs of several 
simulations. In this case, fitness is the mean value 
of total costs calculated in several sequential 
simulation’s runs. with the same parameters. We are 
looking for such parameters that lead to the minimal 
mean value of the total cost function satisfying the 
constraints:

             (10)

     (11)

         (12)

In case the solution does not satisfy constraints, 
the fitness will take extremely high values, due to 
infeasibility of such a solution. During the optimi-
zation procedure, such individuals (candidate solu-
tions) will have only an insignificant chance to pass 
to the next generation. 

It is pointing out that a suitable chromosome 
representation for the particular problem domain 
is an extremely important task, since a good choice 
will make the search faster and easier by restricting 
the search space. However, it is tremendously im-
portant to keep in mind that the crossover and muta-
tion operators must take into account the design of 
the chromosome. It is important to emphasize that in 
the considered problem a non-binary chromosome 
representation was chosen.The main reason why bi-
nary representation is the most frequent is the sim-
plicity to implement and popularity in academic pa-
pers (Davis, 1991). Moreover, binary chromosome 
representation is usually space-efficient, that is why 
it was so popular in times, when memory was a seri-
ous problem. However, in real-world problems, it 
becomes common to create a genotype representa-
tion that corresponds to the considered problem with 
a high degree of accuracy.Crossover is the distin-
guishing operator of the genetic algorithm. Basi-
cally, it is a process of taking two parent solutions 
and production of offspring solutions in order to get 
a new, potentially better one. Crossover is used to 
vary chromosomes from one generation to the next. 
In order to solve the stochastic inventory problem, 
the uniform crossover is proposed (Figure 3).

Figure 3 –Uniform crossover representation

In the uniform crossover individual genes 
in the chromosome are compared between two 
parents and swapped with the fixed mixing ratio Pu. 
Uniform crossover is chosen for two main reasons. 
Firstly, since genes in the chromosome correspond 
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to different simulation parameters SS and B, we 
seek a way to keep odd and even genes separated. 
Secondly, the uniform crossover is an efficient way 
to avoid the premature convergence (Michalewicz, 
1996). 

Pu ← probability of swapping values 
 ← first vector <v1, v2, …, vn>
 ← second vector <w1, w2, …, wn>

fori in (1, length of vector)do
ifPu≥ random number then
swap the values of viand wi
return  and 
Besides, genetic algorithm requires a mutation 

operator to perform the optimization. Taking into 
account the particularities of chromosome encoding, 
it is proposed to apply two different mutation 
operators (“mild” and “radical”). The radical 
mutation is applied in order to prevent the premature 
convergence (otherwise population may get stuck in 
local optima). In radical mutation we replace gens 
in the chromosome by a new integer number in a 
feasible range (0, Imax) with the probability Pm1.

Pm1 ← probability of replacing 
 ← vector

fori in (1, length of ) do
ifPm ≥ random numberthen

← random integer 
return 
On the other hand, mild mutation is applied to 

accelerate convergence. The mild-mutation operator 
alters genes in the chromosome with the probability 
Pm2 by multiplying them on the step delta rounding 
to the nearest integer after that.

Pm2 ← probability of altering value 
 ← vector

fori in range (1, length of ) do
ifPm ≥ random number then

← round( * delta)
return 
It is concluded that tournament selection is 

an efficient and robust mechanism for working 
with imperfect fitness functions (Miller and 
Goldberg, 1995). Tournament selection runs several 
“tournaments” among t individuals (chromosomes) 
randomly chosen from the population. The fittest 
individual in each tournament is selected for the 
following crossover. Since weak individuals have 
relatively a small chance to be selected in large 
tournaments, it is quite important to find the optimal 
tournament size t. Tournament Selection can be 
programmed by the extremely simple algorithm:

P← population
t ← tournament size, t ≥ 2

Best← random individual from P
fori in range (2 to t) do
Next ← random individual from P
if Fit(Next) > Fit(Best) then
Best← Next
return Best
Tournament selection has several significant 

benefits over alternative selection methods, namely, 
it is both simple and efficient to code, it works with 
parallel architectures and, lastly, it may be easily 
adjusted.

Results and Discussion

Consider an example of the six-product 
inventory control system that operates under just-
in-time policy. There is a retailer selling products 
of 6 types that are replenished by an individual 
supplier. Products of all six types share a common 
storage with a limited capacity of 150 pallets  

 150. Each type of product has a unique triangular 
distribution for both demand size and replenishment 
lead time and exponential distribution for demand 
interarrivals.

We apply given adjustments and execute 60-
days simulation of the inventory control system. As 
the result, the algorithm has successfully converged 
at the optimum in 122 generations. The optimal 
solution is represented by the chromosome  = (30, 4, 
17, 2, 24, 4, 41, 5, 15, 1, 13, 1) with the expected total 
costs of  ��∑ ������������  = 2828835 USD.  

  
 The fittest 

chromosome  stands for the following simulation 
adjustments: storage-resources allocation Β = (30, 
17, 24, 41, 15, 13) pallets with the corresponding 
safety-stock levels SS = (4, 2, 4, 5, 1, 1) pallets. 
The pivotal advantage of the involved discreet-
event simulation is a possibility to perform risk and 
reliability analysis. Additionally, such an approach 
allows the researcher to plot the inventory dynamics 
in details and easily spot existing bottlenecks or 
system vulnerabilities.

Since the parameters of a genetic algorithm 
(especially a population size N and a tournament 
size t) have tremendous impact on convergence 
speed and a probability of premature convergence, 
it is very important to find a balance between search 
speed and premature convergence prevention.

Parameters with such a balance may be found 
empirically. We also can conclude that even rela-
tively insignificant alterations in parameters of the 
genetic algorithm noticeably affect the convergence 
speed. Furthermore, some unsuccessful settings 
may result a premature convergence.
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Conclusion

In conclusion, the proposed optimization 
technique is a simple to design and computationally 
efficient approach to find nearly-optimal inventory 
policy in stochastic multi-product inventory 
systems. Additionally, the combination of discrete-
event simulation and genetic algorithm provides a 
flexible method to solve complex problems with 
lack of knowledge on the structure of the objective 
function. Besides, the key advantage of such a 
simulation-driven approach is the possibility to trace 
inventory dynamics in details. It is supposed that 
the method may be applied in automated ordering 

systems by retail companies. 
The research also concludes with a statement 

that the non-binary chromosome encoding in 
combination with uniform crossover and two 
mutation operators provide a fine balance between 
convergence speed and likelihood of premature 
convergence. There are still several minor problems 
to solve, such as the program-optimization of both 
the simulation and genetic algorithm. Moreover, it 
is crucially important to test the proposed approach 
on problems with higher dimension and compare 
it to alternative metaheuristic techniques. These 
issues are waiting to be deeply explored in a future 
research.
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